Whiteshill Primary School
Maths Long Term Plan
Year 4

Unit Focus	Lesson Objective	Subject Knowledge and Teaching Notes
Number and place value	Read 4-digit numbers in words and write using numerals	Make sure you include some examples that have zero as a
	Read 4-digit numbers in numerals and write in words	
	Represent 4-digit numbers	
	Recognise the value of digits in 4-digit numbers	
	Partition 4-digit numbers in different ways	
	Identify 4-digit numbers on a number line	
	Represent 4-digit numbers on a number line	
	Estimate 4-digit numbers on a number line	
	Count backwards through zero to include negative numbers	
	Count in multiples of 25 from zero	
	Find 1000 more than a given number	
	Find 1000 less than a given number	
	Count up in multiples of 1000 from any number	
	Compare two 4-digit numbers using < > and = (less than, greater than, equal to)	
	Order 4-digit numbers with different thousands	
	Order 4-digit numbers with the same thousands	

	Order any 4-digit number	
	Round 2-digit number to the nearest 10	Make sure you include answers that round to the nearest 100 e.g. 403 rounds down to 400 and 497 rounds up to 500.
	Round 3-digit number to the nearest 10	
	Round 4-digit number to the nearest 10	
	Round 3-digit number to the nearest 100	Make sure you include answers that round to the nearest 1000 e.g. 4003 rounds down to 4000 and 4997 rounds up to 5000 .
	Round 4 digit numbers to the nearest 100	
	Round 4-digit number to the nearest 1000	
	Read Roman numerals to 100	
Multiplication and Division: Multiplication Tables	Know and use the effect of multiplying by 0	
	Know and use the effect of multiplying by 1	
	Know and use the effect of dividing by 1	
	Demonstrate the $6 \times$ table using concrete and pictorial representations.	e.g. hundred square, then number line, then arrays
	Count in steps of 6 from zero	
	Demonstrate the 9 x table using concrete and pictorial representations.	
	Count in steps of 9 from zero	
	Demonstrate the $7 \times$ table using concrete and pictorial representations.	
	Count in steps of 7 from zero	
	Demonstrate the $11 \times$ table using concrete and pictorial representations.	
	Count in steps of 11 from zero	
	Demonstrate the $12 \times$ table using concrete and pictorial representations.	

	Count in steps of 12 from zero	
	Use knowledge of factor pairs (commutativity) when multiplying mentally three numbers together.	e.g. $2 \times 6 \times 5=10 \times 6=60$ or $6 \times 5=30 \times 2=60$
Addition: mental and written methods	Add ones to 4-digit numbers (where the thousands change).	e.g. $4994+8=5002$
	Add tens to 4-digit numbers (where the hundreds don't change).	e.g. $5432+60=5492$
	Add tens to 4-digit numbers (where the hundreds do change)	$\begin{array}{\|l\|} \hline \text { e.g. } 5432+90=5522 \\ 5432+70=5502 \\ 5502+20=5522 \\ \hline \end{array}$
	Add tens to 4-digit numbers (where the thousands change)	See above examples - it is the same strategy
	Add hundreds to 4-digit numbers (where the thousands don't change)	
	Add hundreds to 4-digit numbers (where the thousands change)	
	Add 3-digit number to 4-digit number using rounding to the nearest hundred and then adjusting	$\begin{aligned} & 3624+199= \\ & 3624+200=3824 \\ & 3824-1=3823 \end{aligned}$ Explain that this should only be used when adding 3 digit numbers that are close to the multiple of 100 e.g. 297 is close to 300 or 303 is close to 300 . Make sure your examples match this - it is not a useful strategy for other numbers.
	Add two 4-digit numbers using rounding to the nearest thousand and then adjusting	Same but with numbers that are close to multiples of 1000 e.g. adding 1998 or 3002
	Add two 3-digit numbers where the sum exceeds 1000, choosing an efficient mental strategy	Choose the most appropriate of the strategies that has been taught above. The focus is not on the answers - it is on which strategy they chose and why.
	Estimate the answer to an addition calculation	Use rounding to round both 4 digit numbers to the nearest 1000 and then add them mentally using knowledge of multiples of 10 .

	Add two 4-digit numbers by partitioning and recombining (no carrying)	This is not column method - they need to understand the concept behind column addition before they move on to it.
	Use column addition for two 4-digit numbers when carrying is required from the ones column	
	Use column addition for two 4-digit numbers when carrying is required from the tens column	
	Use column addition for two 4-digit numbers when carrying is required from the hundreds column	
	Use column addition for two 4-digit numbers when carrying is required from multiple columns	
	Use column addition for two 3-digit numbers where the sum exceeds 1000	
	Use column addition for 4-digit and 3-digit numbers when carrying is required in multiple columns	
	Use column addition for 4-digit and 2-digit numbers when carrying is required in multiple columns	
	Choose efficient methods to add numbers with up to 4-digits	They need to draw on both mental and written methods you need to give them questions which allow them to choose between round and adjust, partitioning to bridge the ten and column addition for everything else!
Subtraction: mental and written methods	Subtract ones from 4-digit number (where the hundreds change) choosing an efficient mental strategy.	$\text { e.g. } 4502-6=$ what can I see and what do I know? e.g. for this one I know that 2 and 4 make 6 so 1 will take off the 2 then another 4.
	Subtract ones from 4-digit number (where the thousands change) choosing an efficient mental strategy.	$4004-6=$ what can I see and what do I know? e.g. for this one I know that 2 and 4 make 6 so 1 will take off the 4 then another 2.
	Subtract tens from 4-digit number (where the hundreds change) choosing an efficient mental strategy.	$\begin{aligned} & 4356-60= \\ & 4267-90= \end{aligned}$

	What can I see and what do I know? for these you might see that 56 is 4 away from 60 so take away 56 then takeaway another 4. But for the second one you might see that 90 is close to 100 so you would takeaway 100 and adjust by adding 10. Each question may require a different strategy but it is all about using number facts (number bonds, doubles and halves, near doubles and halves, being close to a multiple of $10,100,1000$) that they have to hand.
Subtract tens from 4-digit number (where the thousands do change) choosing an efficient mental strategy	$5025-50=$ What do I know and what do I see? For this one you might spot that 25 is half of 50 so you will take away 25 twice.
Subtract hundreds from 4-digit number (where the thousands don't change) choosing an efficient mental strategy	$4567-300=$
Subtract hundreds from 4-digit number (where the thousands change) choosing an efficient mental strategy	$4023-300=$ What do I know and what do I see? I know that I can do $4000-300$ is 3700 and then adjust by putting the 23 back on.
Subtract 3-digit number from 4-digit number using rounding to the nearest hundred and then adjusting.	$4567-299=$ They takeaway 300 then adjust by adding 1 . This only works with numbers that are very close to the multiples of 100.
Subtract two 4-digit numbers using rounding to the nearest thousand and then adjusting	$4567-2999=$ They takeaway 3000 then adjust by adding 1 . This only works with numbers that are very close to the multiples of 1000.
Subtract by finding the difference between two 4 digit numbers by counting on	The two numbers need to be close to each other to make this a worthwhile strategy e.g. $4237-4231=$
Estimate the answer to a subtraction calculation	
Subtract two 4-digit numbers using partitioning no exchanging	This is the concept behind column subtraction - they need to understand this before they can use column subtraction.

	Use column subtraction for 4-digit numbers when exchanging is required in the ten's column	
	Use column subtraction for 4-digit numbers when exchanging is required in the hundred's column	
	Use column subtraction for 4-digit numbers when exchanging is required in the thousand's column	
	Use column subtraction for 4-digit numbers when exchanging is required in more than one column	
	Use column subtraction for 4-digit and 3-digit numbers when exchanging is required in more than one column	
	Use column subtraction for 4-digit and 2-digit numbers when exchanging is required in more than one column	
	Choose efficient methods to subtract	A mixture of both mental and written subtraction - they need to look at a pair of numbers and know when it is best to use a mental strategy and when they should use column subtraction.
Multiplication and division	Multiply 2 digit numbers by 10 using place value	X 10 makes it ten times bigger - place value columns
	Multiply 1 digit numbers by multiples of 10 using place value	$6 \times 20=6 \times 2=12 \times 10=120$ This is using known number facts again
	Use the distributive law to multiply a two-digit number by 6, 7 or 9.	e.g. 22×6 is the same as $(20 \times 6)+(2 \times 6)$
	Multiply 2 digit number by 6, 7 or 9 using a formal written method	
	Multiply 3-digit number by a 1 digit number using a formal written method where the ones column goes over 10.	You can use any times table for this, not just 6, 7 and 9.
	Multiply 3-digit number by a 1 digit number using a formal written method where the tens column goes over 100.	The number will always need to have a low number in the ones and hundreds column to ensure it is only the tens which goes over 100 - choose your numbers wisely!
	Multiply 3-digit number by a 1 digit number using a formal written method where the hundreds column goes over 1000.	Choose your numbers wisely again!
	Multiply 3-digit number by a 1 digit number using a formal written method where more than one column changes.	This can be any number to encourage lots of column changes.

	Divide near multiples by 6, 7, 9, 11, 12 with remainders	e.g. 37 divided by 6 so they need to recognise that 36 is a multiple of 6 - they have to use their multiples for this and then count on to find the remainder.
	Use times table facts and place value when dividing mentally	e.g. $120 \div 6,1200 \div 6,1320 \div 12$
	Use partitioning to divide by 6, 7 and 9 where the quotient (answer) is a teens number	e.g. 84 divided by $7=12$ they need to spot the times tables they know e.g. $7 \times 10=$ 70 and $7 \times 2=14$
	Divide 3-digit number by a single digit number using partitioning and place value	351 divided by 3 is the same as 300 divided by 3 30 divided by 3 21 divided by 3 You need to choose carefully so that there are no remainders
	Use written method to divide a 3-digit number by a single digit number (hundreds = multiple of divisor, tens $>$ divisor) with no remainder	e.g. 342 divided by 3 or 666 divided by 3 - choose your numbers carefully!
	Use written method to divide a 3-digit number by a single digit number (hundreds > divisor, one exchange) with no remainder	e.g. 423 divided by 3 - choose your numbers carefully!
	Use written method to divide a 3-digit number by a single digit number (hundreds > divisor, two exchanges) with no remainder	e.g. 463 divided by 3 - choose your numbers carefully!
	Use written method to divide a 3-digit number by a single digit number (hundreds < divisor) with no remainder	e.g. 126 divided by 3 - choose your numbers carefully!
	Use multiplication or division to solve correspondence problems	e.g. if I need 30 red marbles and there are 3 red and 1 blue marbles in each bag, how many bags do I need? You know how many marbles you need, and you know how many are in each bag, so you use division to work out the answer.
	Use multiplication or division to solve scaling problems	e.g. for every 25 bananas there are 3 apples? Or there are 12 times as many girls as boys in the class - how many girls are there if there are 4 boys.
Decimals	Recognise that hundredths arise from dividing a number (or object) into one hundred equal parts and dividing tenths by ten.	If I split this object in to ten, then each one of those in to ten, there are 100 equal parts.

		Express as a fraction and decimal e.g. If I choose 40 of these equal pieces, it is 40 out of 100 or $40 / 100$ or 0.40 out of 1.00 Use the place value counters
	Read and represent a number with 2 decimal places	Using decimal place value counters e.g. $0.42=$ no one counters, 4 tenth counters and 2 hundredth counters.
	Count up in hundredths	e.g. $0.69,0.70-$ seeing that this is 69 hundredths and 70 hundredths - important that you say zero point six nine, not zero point sixty-nine
	Count down in hundredths	e.g. $0.80,0.79-$ seeing that this is 80 hundredths and 79 hundredths - important that you say zero point six nine, not zero point sixty-nine
	Divide a one-digit number by 10	
	Divide a one-digit number by 100	
	Divide a two-digit number by 10	
	Divide a two-digit number by 100	
	Compare numbers with 1 dp	
	Compare numbers with 2 dp	
	Round numbers with 1dp to nearest whole number	
	Convert from pounds to pence	
	Convert from pence to pounds	
	Use mental strategies to add numbers with 1 dp	Children to think about their number facts and choose the most efficient method.
	Use mental strategies to add numbers with 2 dp	Children to think about their number facts and choose the most efficient method.
	Use column addition for numbers with 2 decimal places when carrying is required	

	Use mental strategies to subtract numbers with 1 dp	Children to think about their number facts and choose the most efficient method.
	Use mental strategies to subtract numbers with 2 dp	Children to think about their number facts and choose the most efficient method.
	Use column subtraction for numbers with 2 decimal places with exchanging required	
Fractions	Add fractions with the same denominator within and beyond one whole	
	Subtract fractions with the same denominator within and beyond one whole	
	Calculate a unit fraction of an amount when the answer is a whole number	Unit fraction is a fraction with 1 as the numerator
	Calculate a non-unit fraction of an amount when the answer is a whole number	Non-unit fraction is a fraction with a number other than 1 as the numerator but not an improper fraction e.g. 3/7
	Identify equivalent fractions from diagrams	
	Find families of equivalent fractions	e.g. a set of fractions that are equivalent to $1 / 2$
	Know and use the decimal equivalents to 1/4, 1/2, 3/4	
Geometry: properties of shape - Angles	Identify acute angles	
	Identify obtuse angles	
	Identify acute angles in shapes	
	Identify obtuse angles in shapes	
	Identify right angles in shapes	
	Compare angles up to two right angles in size	
	Order angles up to two right angles in size	
Geometry: Properties of Shape	Identify and describe an equilateral triangle	
	Identify and describe an isosceles triangle	
	Identify and describe a scalene triangle	

	Identify and describe a parallelogram	
	Identify and describe rhombus	
	Identify and describe a trapezium	
	Identify and describe a kite	
	Classify 2-D shapes	Including all the shapes you have introduced above plus the basic 2D shapes learnt in previous years e.g. square, oblong - you might also apply their angle knowledge during this lesson e.g. which shapes have got obtuse angles?
	Identify lines of symmetry of a 2D shape	Looking for lines of symmetry using regular and irregular shapes - need to understand that regular shapes have the same number of lines of symmetry as they have vertices e.g. a hexagon has 6 lines of symmetry.
	Identify a line of symmetry of a pattern and for a diagram of a reflection	e.g. coloured beads in a row or Rangoli patterns or pixelated pictures.
	Use a line of symmetry to produce a symmetrical pattern	
	Use a line of symmetry to complete a symmetrical shape	
Geometry: Position and direction	Use coordinates to describe the position of a point in the first quadrant	e.g. this point is at (8,5)
	Plot points in the first quadrant using co-ordinates	e.g. read a co-ordinate (8,5) and plot it on a grid.
	Use coordinates to plot a set of points to construct a polygon	Revise the shapes they were taught above and get them to name them to apply their previous knowledge - a polygon is any 2D shape with straight sides.
	Describe movements between positions as translations of a given unit to the left/right	Start with just moving one point on a grid, then move on to moving a whole polygon on a grid by moving all the points of the polygon - again, name the shapes to apply their previous knowledge.
	Describe movements between positions as translations of a given unit to the up/down	

	Describe movements between positions as translations of a given unit to the left/right and up/down	2 steps e.g. move all the points 4 left, 2 up - again use shapes that they have learnt previously to help them apply their knowledge.
Measurement: Converting units	Convert between kilometres and metres	
	Convert between centimetres and millimetres	
	Convert between kilograms and grams	
	Convert between litres and millilitres	
Measurement: Area and perimeter	Measure and calculate the perimeter of 2D shapes when dimensions are unknown	This means they need to measure it first with a ruler - you could apply conversion between mm and cm here so they get more practise of this. Once they have measured all the sides, they add them together. Keep it to the 3 or 4 sided shapes they learnt earlier in the term - again, they can name the shapes to apply their knowledge of shape. Also introduce the idea that if it is a regular shape you only need to measure one side and then multiply.
	Calculate the perimeter of rectangles (including squares) when dimensions are known	Don't label all of the measurements e.g. on a square just label one side as 4 cm - they need to know that the rest are 4 because it is a regular shape. On a rectangle, just label 4 cm and 2 cm on two of the sides - they need to realise because of their knowledge of rectangles, that opposite sides are the same.
	Calculate the perimeter of other rectilinear shapes when dimensions are known	Rectilinear means any shape whose sides all meet at right angles.
	Find the area of rectangles (including squares) by counting squares	
	Find the area of other rectilinear shapes by counting squares	
Measurement: Time	Read the time from a clock face (analogue) to the nearest minute and write it as a digital am time.	e.g. 7.23
	Read the time from a clock face (analogue) to the nearest minute and write it as a digital pm time.	e.g. 17.54
	Read the time from a digital clock and write it as analogue am time.	e.g. 8.54 would be written as 6 minutes to 9 am.

		Or
	Read the time from a digital clock and write it as analogue pm time.	e.g. 17.39 would be written as 39 minutes past 5pm.
	Converting from minutes to seconds and hours to minutes.	
	Converting from weeks to days and years to months	
Statistics	Solve comparison, sum and difference problems for a pictogram where the symbol represents multiple items	
	Present data on a bar chart with an appropriate scale on the frequency axis	Discuss the fact you can use different scales depending on the size of the data range - choose the scale that best suits their data.
	Solve comparison, sum and difference problems on a bar chart with different scales on the frequency axis	
	Present data on a time graph	
	Interpret data on a time graph.	
	solve comparison, sum and difference problems in tables	e.g. population of different countries, heights of mountains, temperatures in different towns in a table. You could have more than one column e.g. the population over a number of years, or the temperature on different days of the week.
	solve comparison, sum and difference problems on time graphs	

